
Report No. 8800O-.

ROYAL SIiIAI2 D RADAR ESTABLISHMEN7-
MALVERN

P 1f

FORMAL SPECIF16,-:10t (>:A

SECURE DOCUMENT CONTRO~L SYS r ! m, W ME

Author C L Harroetu

LIT1IC
fj. -LECTE

JU 15 1988B1

RSREA

Malom, Worcestershire.
February 1988

UNLIMITED

ROYAL SIGNALS AND RADAR ESTABLISHMENT

REPORT 88002

Title: Formal Specification of a Secure Document Control System cr S ?E

Auther: C L Harrold

Date: February 198

SUMMARY

This paper -ormally describes the requirements for a demonstration cf- a EezL-e

electronic registry control system (Se-cus) to be implemented us-es t-E
security attributes of the SMITE secure capability computer.

O ric

A.;ceFjcYL r'

NTIS CRA,&I

)ID0 TAR
U C ij ,Crj L)

*~ i

Copyright

Controller HMSO London
1988

-• -- - -- 1

Contents

I. Introduction

Part 1
2. General Types
3. Documents and Files,
4. Other Objects,
S. Displays,
G. Storing Capabilities,
7. Users,
8. Messages
9. Journallin9

Part 2
10. The Journalled Filing System
11. Journallin9 Users
12. Promoting the Operations involvin9 Capab.!ities
13. The Operations upon the Filin9 System
14. The Operations upon Cupboards
IS. The Operations upon the Mail System
16. Promotin9 the Operations involving the Display
17. The Operations upon the Display of a User

18. The Operations Upon Users

19. Sercus - the Complete System
20. Summary
21. References

L1

1. Introduction

This document formally describes the requirements for a demonstratio- of a
secure electronic registry control system (Sercus) to be implemented us rS the
security attributes of the SMITE secure capability computer [1,2,31. Trie
formal notation used in this specification is 2' , which has been develcped K.
the Programmin9 Research Group at Oxford University [4].

Sercus is intended to control the access to, and creation of, ciass ;,ed
documents and files. In the paper world, all documents and files are ce-nt-al>
recorded and information as to who has had access to them is mainta ned.
Sercus will enforce similar mechanisms. In addition to handling documents a-.-
files, users of Sercus will be able to send simple mail messages.

When users are logged on to Sercus they are presented with 2 -'-'l_; t 1 st
cons,sts of a set of windows. R1l the window software will be competes
trustworthy, but may be used to invoke untrusted software. Wrnle untrustet
software is active in a window the classification of the data is prcrn-ent!
displayed. Sercus will monitor the movement of objects between these " nccws,
and correctly maintain the classification levels. - 4

The specification of Sercus is divided into two distinct parts. The first pa-t
specifies the underlying components of the system, such as the docume-ts,
users and displays, and defines the basic operations on them. The second part
shows how these components are combined together and constraints added to the
basic operations to create a system that is both functional and secure.

This specification will form the basis of an nvestigation into techniques fo-
provin9 conformance between high level specification and code level
implementation. This is required to achieve the highest possible leves of
design assurance.

2

Part 1

The following sections describe the various components of Sercus, such-j asdocuments, files and users, and define the simple operations upon them.

2. General Types

I CLASS I
There is a given set of classifications. These are used for classifying
objects and giving clearances to users.

There is a relationship, Z, between classifications to indicate domination. This
will be needed when checking whether a user is cleared to see a document. For
example, a user cleared to 'Secret' will be able to read a 'Restricted'
document, because the classification Secret dominates Restricted. However,
users cleared to Restricted will not be able to read Secret documents.

_ :part ialorder(CLASS

This ordering is partial because not all classifications are
comparable. For example 'Secret UK Eyes Only' neither dominates
nor is dominated by 'Secret US Eyes Only' .

It is useful to define a classification that is dominated by all other possible
classifications.

bottom CLASS

U class CLASS - class 2 bottom

There is a least upper bound operator between two classifications. 1his returns
the lowest classification which dominates both of them. For example, a
document that contains both Secret Atomic and Secret Nato in-Formation must be
classified to at least 'Secret Atomic Nato'.

lub (C CLASS x CLASS) -, CLASS

0 a, b CLASS #
a lub b a
a lub b > b
U 1 : CLASS 1 i a A I b

1 a lub b

Note that this function is total. This implies that there is one
classification which dominates all other possible classifications.

An operation that takes a set of classifications and returns the lowest
classification that dominates all of them, is also defined.

LUB_ P CLASS -. CLASS

U set P CLASS
c set •
LUB set 2 c
U 1 : CLASS I i c set c) LUB set

STR I
There is a given set of character strings. These are intended to represent
printed messages on the screen, such as the current classification. An
operation which takes a classification and returns the string representing it is
defined.

General Types

show _ CLASS - STR

This is a function because there is only one string to represent
each classification. The function is total because all
classifications must be representable, and one to one because all
the strings must be unique.

CAPABILITY I
There is a 9iven set of capabilities for all possible objects. A capability ,s a
universal, unforgable name for an object. Capabilities are the rmIaqs C;
referin9 to objects. Each capability refers to only one object, and there s
only one capability for each object.

Capabilities are only distinguishable by the virtue of the objects
they refer to. This means that whenever capabilities are copied it
is impossible to tell them apart as they will refer to the same
object. Hence, the restriction that there is a single capabilty For

each object in Sercus, and consequently capabilities can be in more
than one place at a time.

TIME I
Time exists, and a relationship between two times to indicate 'not late- thEi' is
defined.

: totalorder(TIME

This ordering is total since all times are comparable.

The current time will always be available in Sercus, althoush no operatio-s to
update it will actually be defined.

time-now : TIME

General Types

3. Documents and Files

3. 1 Introduction

Sercus is intended to control the access to, and creation of, classified
documents and files, and to model some of the mechanisms in use in the paper
world that do this. In the paper world, all documents are centrally recorded
on a Classified Document Resister [cdr) and all files on a Filelist. Documents
can be uniquely identified by their cdr number, or if they have been filed, by a
file number and enclosure number. The cdr also records the people who have
seen the document.

For the purposes of specification it is useful to partition the set of all
possible capabilities into three sets.

capsjfor docs P CAPABILITY
capsforfiles P CAPABILITY
caps-for _anon F CAPABILITY

capsjordocs, caps forfiles, caps foranon)
partition CAPABILITY

This means that when creating new documents, for example, it will
not be necessary to check whether the capability you are 9iving the
document already exists as a file or other capability.

3.2 Documents in Sercus

Documents are unalterable objects which may only be read. They have a
classification bound into them and can be uniquely identified by a cdr number.
The characters that make up the text of a document are uninteresting as far as
specification at this level is concerned. The only interesting property of the
contents of a document is that it may contain capabilities for other documents.

Documents do not move about the system, but are accessed via
capabilities. Hence, unlike in the paper world the cdr will not
record the location of a document, but will record which users have
opened the document (note that simple possession of a capability
does not automatically allow access and consequently it is not
useful to record this fact). This mechanism will be added at a
later date, see journallinS in section 9.1 and 10.

CDR_NUM I
There is a siven set of cdr numbers that will be used to uniquely identify the
documents. Cdr numbers are ordered, in the paper world on date of creation,
and an operation to discover this order is defined.

S__: total_order(CDR_NUM)

This ordering is total because all cdr numbers are comparable.

Documents and Files 6

DOCUMENT

classification CLASS
contents : F CAPABILITY
cdr number : CDR_NUM

contents 9 caps-for docs (1)

(1) Documents can only contain capabilities for other documents.

F- mappin9 between document capabilities and their associated documerts is
required. Only some of the total set of' capabilities for documents refer t:
existing documents, as other capabilities will be required whenever re.-
documents are created.

THE_DOGS

whichdoc : CAPABILITY .. DOCUMENT (I

dom which_doc 9 Laps-fordocs

0 c • dom which_doc
whichdoc(c).contents 9 dom which_doc 2

U i, j : dom wh,ch doc
whichdoc(i).cdr-_number = which doc(j).cdrnumber *-i i = j (3)

The which_doc -Function maps the document capabilities to their documents. The
domain of this function is the set of all the document capab.!lt[es sc ;a

created. Hence the range is the set of' all the documents created so fa.

(1) This is P functlnn Ihcuse bWti ran cr-'," refer to one
document. The function is one to one berause there is only one
capability for each document, and partial because not all the
possible documents have yet been created.

(C) All the documents in Sercus may only contain capabilities for other
documents that exist.

(3) Documents are uniquely identifiable by their cdr number.

6THEDOCS a I THEDOCS'; THEDOCS I

ETHEDOCS a [ATHEDOCS I 8THEDOCS' = eTHEDOCS 3

3.3. Files in Sercus

Files in Sercus are not necessary for naming or accessing documents. They m-e
simply a convienient grouping of document capabilities. In the paper world files
documents can be identified by a file and enclosure number. In order to be able
to do this in Sercus, it is necessary to insist that the document capablt1es
may be on at most one file.

Note that although documents can only be on a single file, the>'
cc,,tain capabilities for documents on other files.

FTITLE I
All files will have a title, which is taken from the 9iven set, and is itself

classified. Files also have an overall classification, which must dominate the

7 Documents and Files

III

title classification, and the classification of all the documents they contain.
However, the overall classification is not necessarily the least upper bound of
the title classifications and the document classifications, but could be
significantly greater. For example, a Secret file may only contain Confidential
documents. Documents on a file are ordered by enclosure numbers, which are
taken from the set of natural numbers.

FILE _

title : FTITLE
title_class, overall__class CLASS
does : seq CAPABILITY

ran docs r- caps-for_docs (1)

overall__class a titleclass (2)

0 i,j : dom docs • docs(i) docs(j) *. i = j (3)

(1) Only capabilities for documents may be put on a file.

Note that although this specifies that files can contain only
document capabilities, it is only later, see section 3.4, thE Filin9
System, that it can be insisted that these documents actually
exist.

(2) The overall classification of a File must dominate the title
classification.

Note that the fact that the overall classification must also
dominate the classification of all the documents on the file cannot
be specified until later (section 3.4).

(3) Documents cannot be put on a file more than once.

Note that the position in the sequence of filed capabilities
represents the enclosure number of the document.

As for documents, a mapping between the fiie capabilities and files is required.

THEFILES

which_-file : CAPABILITY " FILE

dom which_file c capsfor_.files

0 file ran which-file * file.docs s < [I)

1 i,j ran which file
ran i.docs n ran j.docs -{} 4 i =j (2j
i.title = j.title .-* i j (3)

The which-file function maps the file capabilities to their particular files. The
domain of this function is the set of all the capabilities for files so far
created. Hence the range is the set of all the files created so far.

(1) Files cannot be empty.

(2) Documents can only be on a single file.

Documents and Files

_ _ __ __ __ _ -W or

(2; All files can be uniqely identified by their title.

Hence a document can be uniquely identified by supplying a file title a-zl a-
enclosure number.

6THE_FILES a I THE FILES'; THEFILES I

ETHEFILES a I ATHEFILES I eTHEFILES' = eTHEFILES]

3.4. The Filing System

The filing system for Sercus is simply the files and documents so far creatE,
together with the constraint that the files can only contain capa)l itles fc-
documents that exist.

FILING_SYSTEM

THEOOCS
THEFILES

U file :rar r~~~ile
ran file.docs z dom whichdoc (1)

U d : whichdoc (ran file.docs)
file.overall_class ' d.classification t2)

1) Files can only contain capabilities For known documents.

(2) The overall classification of a file dominates the classifications of
all the documents it contains.

LFILINGSYSTEM a [FILINGSYSTEM' ; FILINGSYSTEM

_:FILINGSYSTEM a [LFILINGSYSTEM I
OFILINGSYSTEM' = eFILINGSYSTEM I

It is important to note that, in this specification, operations on documents mist
be performed via the filing system. This is because files can alter as a sde
effect of the simple operations on documents. For example, chang nr t'-
classification of a document could alter the classification of any 4ile t
contains a capability for the document.

3.S Destroying Objects

No operations to explicitly destroy objects in Sercus are defined. This s
because unlike in the paper world, documents and files may be accessed E.
more than one user at a time. Revoking access to, or destroying, the oEjezts
then proves very difficult, as users could still possess capabilities tc-
objects that no longer exist. As far as this specifiction is concerned, tn-s
capabilities could even potentially have been reused for other objects. P
journalled information about the object could also have been lost, anz- th;s is
undesirable in a secure system. However, documents and files could be
effectively removed by regrading them so that no users are cleared to see
them any more.

B Documents and Files

3.6. Filing System Operations

This section describes the underlying filing system operations. These will be

further defined as the specification proceeds (refer to part 2).

3.6. 1 create a document

Creating a document involves providing some contents and a classification. This
operation results in a new document and capability which are added to the
whichdoc function. Hence, the operation involves a change to the existing
documents, but not to any files. In the paper world all documents are recorded
on the cdr and on creation will be given a cdr number to reference them. Hence,
this operation also results in the new cdr number.

create-document b6s ic-op

AFILINGSYSTEM
-THEFILES

classification? : CLASS
contents? F CAPABILITY

newcap! CAPABILITY
new _doc! DOCUMENT
cdr_num! CDRNUM

contents? 9 dom whichdoc (1)
newcap! E dom which_doc (2)
newdoc! E ran which doc (3)

newdoc!.classification = classification7
newdoc!.contents = contents?
newdoc!.cdrnumber cdrnum!

U d : ran whichdoc (4)
cdr _num! x d.cdr number
cdrnum! 2 d.cdrnumber

whichdoc' = whichdoc U { new-cap! -. new_doc! } (S)

(1) The conte -ts of a new document can only be capabilities to already
known documents.

(Z93) The new document and its capability did not exist before the
operation.

This means that the capability for the new document cannot be part
of the supplied contents. Hence, since document contents are
unalterable, no document can refer to itself.

(4) The new document has the supplied classification and contents and
is assigned a cdr number. This cdr number is not one of those
belonging to already existing documents, and is 'greater than' all
the exiting numbers. However the new number is not necessarily the
next in the sequence, and it is possible that there are 'holes' in
the cdr.

(S) After the operation, the new capability will be mapped to the new
document by the whichdoc function. All other mappings are
unchanged.

Documents and Files 10

3. 8.-2 read a document

Opening a document does not alter existing documents or files. A capa D I
for a document is supplied, and the operation results in the set of Capa: S
that make up its contents.

read documentba,,oP

..FILING_SYSTEM

doc cap7 CA4PABILITY

contents' F CAPABILITY

contents! =which-doc(dc-cap?).contents

Note that at this level of specification there is no inotion of
checkinq clearances. This cannot be added until after the use--
have been specified (section 14).

3.8.3 finding documents

Users will be able to ask for documents b their cdr number or file title a-no
enclosure number. This Operation lists all the documents known to Sercus b.
the:r cdr number, but does not alter any documents or files.

FFIL INGSYSTEM1

cdr : seq LORNUM

ran cdr! d : ran which-doc . d.cdr _number 1 (1)

U i, j :dom cdr! I i 2! j - cdr!(i) 2! cdr!(j)(2)

(1&2) Listing the cdr results in a sequence of all the cdr numbers for
Existing documents. This sequence is ordered.

The following operation looks up a cdr number and returns the assczcate-_
document capability. The fil ng system is unaffected.

find document.6 & ._0

.FILINGSYSTEM

cdr _num' CDRNUM

doc..cap. CAPA~BILITY

cdr _ num7 E {C d :ran which-doc . d.cdr _ number 1 (1)
which-doc(doc cap!).cdr _number = cdr num7

(1) The cdr number must be assigned to an existing document, and th-E

Lorrect document capability is supplied.

11 Documents and Files

This operation takes a file title and enclosure number and returns the required
document capability. The filing system is unaffected.

f i nd_f i leddocumentb.,, _Op

-FILINGSYSTEM

title? : FTITLE
enc?: N

doccap! : CAPABILITY

doccap! = file.docs(enc?
where

file : ran whichfile I title = title?

This operation lists the contents of a file. The filing system is unaffected.

file-contentsbas iop,

zFILINGSYSTEM

title? FTITLE

caps! : P CAPABILITY

caps! = file.docs
where

file ran whichfile I title = title?

Note that further contraints will be added in part 2 to ensure that
the user performing this operation is cleared to see the file
contents.

3. 6.4 add document to a file

Adding a document to an existing file involves supplying the file and the
document capability. The enclosure number of the document on the file is
returned. The overall file classification may have to increase, in order to
dominate the classification of the new document. No other files or any of the
documents are chansed by this operation.

Documents and Files 12

_add_doc~tof lae s cop

AFILINGSYSTEM
ETHE_DOCS

file_cap : CAPABILITY
doc-cap') : CAPABILITY

file' FILE
enc! N

filecap7 e dom which_file
doc cap'7 e dom whichdoc (1
doc-cap' 7 U{ file : ran whichfile * ran file.docs } (21

file! 9 ran which-file
file!.docs = which filet filecap)).docs (doccap)
file!.title = whichftle(t file_cap?).title
file'.title-class z which file(file cap'7).titleclass
filel.overallclass = whichfile filecap').overallclass

lub
which-doc(doc-cap)).classification

whichfile' = whichfile e { file cap ") i file! (3)

enc! = filel.docs

(1&2) The capability supplied must be for an existin9 document that is nct
already on any file.

(3) After the operation, the supplied capability now refers to a ne"
file (replacing the old file). This f ile is a copy of the original file
except that the new document is added to it and the overall
classification dominates the new document's classification. No
other files are changed.

3.6.5 create a file

To create a file, a document, file title and title classification must he
supplied. The overall classification is the document classification, wh ch rnst
of course dominate the title classification. The document cannot already be Onl
any file. The whichfile function will now also map the file capability to the ne-
file. The existing documents are not changed and nor are any previous files.

13 Documents and Files

create-f i leb _,,

AFILINGSYSTEM
zTHE_DOCS

doccap? : CAPABILITY
title ? • FTITLE
title_class? : CLASS

new file! FILE
new-cap! : CAPABILITY

doc._cap? e dom which_doc (1)
doc._cap? 9 U file : ran which-file • ran file.docs } (2)
title? 0 { file : ran which file • file.title } (3)
which_doc(doccap?).classification 2 titleclass? (4)

newcap! 9 dom whichfile (S)
new-file! 0 ran whichfile (6)

new_file!.docs (doccap?)
new-file!.title title?
new file!.overallclass = whichdoc(doc cap?).classification
newfile'.titleclass = titleclass?

whichfile' = whichfile U { newcap! - new-file! } (7)

(1&2) The capability supplied must be for an existing document that is not

already on any file.

(3) The supplied title must be unique.

(4) The classification of the document to be put on the file (this will
be the overall file classification) must dominate the 9iven title
classification.

(S&6) A new file capability and file are created, ie they did not exist
before the operation.

(7) After the operation, the which file function will map the new
capability to the new file. No other files are changed.

3.6.6 regrade file

Both the title and overall classification of a file may be regraded. However,
the overall classification of a file cannot be regraded lower than the title
classification. In such cases, the title classification would have to be
resraded first.

Changing the classification of a file involves supplying the file and a new
classification. The following schemas specify resradins the title and the
overall classifications of a file.

Documents and Files

regrade_file title b _as ____op

8FILING SYSTEM
7THE_DOES

filecap? : CAPABILITY
title_class? : CLASS

file! : FILE

file-cap? e dom whichfile 1
file! 9 ran whichfile (2

file!.titleclass = title-class?
file!.docs = which_file(filecap").docs
file!.title which-file(file-cap?).title
file!.overallclass = whichfile(file-cap ?).overallclass

whichfile' = which_file e { file-cap? - file! } (3)

C1) The file to be regraded must be known to the system.

(2) A new file is created, ie one not known be-Fore the operation. Th's is
a copy of the file to be regraded, except that it has the new title
classification.

Note that the title classification cannot be greater than the
overall classification.

(3) The original file is replaced by the new fie and no other files are
changed.

regradefile

6FILINGSYSTEM
ATHEDOCS

filecap? : CAPABILITY
overall_class" : CLASS

file! : FILE

file-cap? e dom which_file (1)
file! 9 ran whichfile (2)

file!.overallclass = overallclass"
file!.docs= which file(filecap").docs
file!.title = which.file(file-cap?).title
file!.titleclass = which_file(filecap?).titleclass

whichfile' = whichfile * { file-cap? - file! } (3)

(1) The file to be regraded must be known to the system.

(2) A new file is created, ie one not known before the operation. This is
a copy of the file to be regraded, except that it has the new
overall classification.

Note that the Filing System schemas insist that the overall
classification must dominate the classification of all the documents
on the file, and consequently a file cannot be regraded lower than
the least upper bound of all the documents classifications.

iS Documents and Files

(3) The original file is replaced by the new file and no other files are
changed.

Simply regrading a file does not alter any documents. However, regrading a
document may result in a file classifcation being regraded, hence splitting the
resradej'ile schema into two parts.

regrade__fileb. a regradefile A VTHE_DDCS

3.6.7 regrade document

Regradin a document involves supplying a document and a new classification. If
this document is on a file, the overall classification of the file may have to
change as a consequence.

The operation is split into two parts. The first regrade schema is relevent when
the document in question has not been filed, and the second when it has.

This regrade operation simply changes the classification of a document that is
not on any file.

regrade.unf i leddocument

AFILING_SYSTEM
ETHE-FILES

doc cap? : CAPABILITY
class? : CLASS

doc! : DOCUMENT

doc-cap? e dom whichdoc (1)
doccap? 9 U{ file : ran whichfile - ran file.docs } (2)

doc!.contents = which doc(doc__cap?).contents
doc!.cdr number = which_doc(doc_cap?).cdr _number
doc!.classification = class? (3)

which.doc' = which_doc * { doc_cap? i. doc! } (4)

C1&2) The document to be regraded must be known, and is not on any file.

(3) A new document is created which is given identical contents and cdr
number, but has the new classification.

(4) After the operation, the whichdoc function maps the document
capability to the new document. No other documents are changed.

This following schema defines the operation to change the classification of a
filed document and indicates which file the document is on. However, it does not
alter the overall classification of the file.

Documents and Files 16

regrade fileddocument

AFILINGSYSTEM

doc cap? : CAPRBILITY
class? : CLA5S

file-cap? : CAPABILITY

doc! : DOCUMENT

doc cap? e dom whch_doc (1)
doc-cap ? e U{ file : ran which_-ile • ran file.docs } (2)

doc! 0 ran which doc (3)
doc!.contents = whichdoc(doc cap ?).contents
doc!.cdr _number = which doc(doc cap?).cdr _number
doc!.classification = class?

which-doc' = which_doc e { doccap? -. doc! } (4)

doccap? e ran (whichfile(filecap?).docs) (5)

(1&2) The document to be regraded must be known, and must be on a file.

(3) A new document is created which is given identical contents and cdr
number, but has the new classification.

(4) After the operation, the whichdoc function maps the document
capability to the new document. No other documents are changed.

(5) The file capability refers to the particular file that the document
is on.

This schema specifies both regrading a filed document and the file it is on.

regrade doc_and_file

regradef i leddocument
regradef i le

overallclass? = which_ file(filecap?).overallclass
lub

class? (1)

(1) The new overall classification of' the file will be the least upper
bound of its original classification and the new document
classification.

The complete regrade operation is either the simple regrade if the document is
not on a file, or regrading both the document and the file it is on.

regradedocumentbasi op e regradedocandfile

v regradeunfiled_document

17 Documents and Files

1. Other Objects

Capabilities are not restricted to refer to only documents and files. It is
possible for anonymous objects to exist about which the system knows very
little, except their contents. The only interesting contents of an anonymous
object is the set of capabilities it contains.

These anonymous objects could for example contain the characters for making
up the non capability contents of a document that would exist in a real system.

ANON

contents : P CAPABILITY

As for documents and files, a function to map anonymous capabilities to their
associated object is required.

THEANONS

which_anon : CAPABILITY >- ANON

dom whichanon Q capsforanon

Similarly the domain of this function gives the set of all existing capabilities
for unknown objects, and the range gives all the existing unknowns.

ATHEANONS a [THEANONS' ; THEANONS I

.THEANONS a [ATHEANONS I eTHE_ANONS' = eTHEANON5 I

The contents information about anonymous objects will be required
later when these objects are copied and stored.

The most useful operation on an anonymous object is to make a copy of it.

copy anon

ATHEANONS

original?, copy! : CAPABILITY
newanon! : ANON

copy! 4 dom whichanon (1)
newanon! 0 ran whichanon (Z)
new_anon!.contents = whichanon(original?).contents

whichanon' = which-anon U { copy! newanon! }

(1&2) A completely new capability and object are created.

Other Objects 18

S. Displays

5. 1 Introduction

A display in Sercus will consist of a set of windows. Some of the windows
running untrusted software, although this will be monitored by the wd :-
software, which is trusted. Windows will have a set of capabilities that a-E
available to them. The display will contain a visible representation of some c -

these capabilities. Windows that are monitoring untrusted software will have th-1e
correct classification of the information in the window displayed at all times.
The windows that are not running any untrusted software will form the trusted
path. Certain security critical operations will only be executed if they have
been invoked from the trusted path (5).

The set of all possible capabilities can be partitioned into two sets. Trusted
capabilities are associated with objects that can be trusted to maintain tree -

own classification. The untrusted capabilities need to be supervised.

trusted-caps : P CAPABILITY
untrustedcaps : P CAPABILITY

(trustedcaps, untrustedcaps) partition CAPABILITY

5.2 High Water Marks and Related Groups

Some of the objects in Sercus, such as files and documents, have their
classification bound into them, and are trusted to maintain it correctly. Otner
objects are not classified as such. However, a mechanism is needed to mcnitcr
the classification of information these untrusted objects have access to. Ths
is done by means of high water mark classifications.

Whenever untrusted software is accessing objects that do not protect the:' owr
classification, the worst case situation must be anticipated, and it is assumed
that all these objects have access to all the information available to the
software. Whenever one of the objects in such a related set has ,ts
classification increased, perhaps by opening a document, all the other objects
are assumed to have access to the same information, and must be class fIed
accordingly. These relationships are monitored by having related groups cf
objects and a high water mark classification associated with each group.

[GROUP I
Group objects are the mechanism for indicating the relationships betwee'
untrusted capabilities. Untrusted capabilities can be associated with a qroa,
object taken from the given set, and will be assumed to be related if they
refer to the same group object. Capabilities can only belong to a single related
set, and hence can only refer to a maximum of one group object. Each group
object has a high water mark classification associated with it.

19 Displays

/.

Restricted Restricted Secret

Figure 1: As far as Sercus can tell, the objects in each circle
are related, and the capabilities for these objects will
all be associated to the same group object. The group
objects have the high water mark classification
associated with them.

HIGH_WATER_MARKS

which 9roup : CAPABILITY *o GROUP (1)
hwmclass : GROUP -" CLASS (2)

dom which__.roup c untrusted caps (3)

ran which~sroup Q doam hwmclass (4)

(1) Capabilities are related if they refer to the same group. This is a
function because each capability can only belong to a single related
group, and partial because not all capabilities necessarily belong
to a group.

(2) The relationship between groups and classifications is a function
because each group has a single classification associated with it.
This function is partial because it will be necessary to create new
groups. Related sets could have the same classification, and hence
the function is many to one. The domain of this function is all the
group objects that have been created so far.

Note that not all the existing group objects necessarily have any
capabilities associated with them.

(3) Only untrusted capabilities belong to groups.

(4) All known groups will have a classification associated with them,
regardless of whether any capabilities are in the group or not.

6HIGHWATERMARKS a [HIGH_WATER_MARKS' ; HIGHWATERMARKS I

7HIGHWATERMARKS a I 8HIGHWATERMARKS
I eHIGHWATERMARKS' = eHIGHWATERMARKS

Displays 20

5.3 Windows in Sercus

A window is modelled as the set of capabilities that are avallaDle to it. TI E

characters on the screen are uninteresting as far as this spec, catlc- s
concerned and are not specified.

WINDOW

available •P CAPABILITY

I WID I
Windows need to be distinguishable even if they contain identical sets o
capabilities. In order to be able to do this, windows have a unique ident -- e-
associated with them, taken from the given set.

THE WINDOWS

whichwindow : WID
- WINDOW (1)

The domain of the whichwindow function gives the set of all windoi idetifies

that are valid, and the range all the windows that Exist.

(1) This is a function because window identifiers can only refer to onE
window. The function is partial because not all the possible wndows
have yet been created, and many to one because two secarate
windows can contain the same set of capabilities.

LTHEWINDOWS e [THE-WINDOWS' ; THE-WINDOWS I

ETHEWINDOWS a [ATHEWINDOWS I eTHEWINDOWS' = eTHEWINDOWS I

5.4 Untrusted Software

Untrusted software has a set of capabilities that it can manipulate. P11
untrusted software will be monitored by a window and some of the capbilites
that the untrusted software is manipulating will also be known to this windcw.
Since it must be assumed that all untrusted capabilities available to software
are related, the monitoring window will maintain a related group and high water
mark classification for all those that it is aware of. This classification will be
displayed in the window.

In all the following diagrams objects in the clear circles could be
related and will all refer to the same group object. For clarity,
these group objects have been omitted from the diagrams. Each
related group has a high water mark classification associated with
it. The thicker edged squares are the windows and the other
squares the untrusted programs. All the capabilities in each square
are those that are available to it. Any car-abilities in the overlap
are those that the untrusted software is manipulating that the
window software is aware of.

21 Displa>s

.-- High Water Mark

-.. High Water Mark

W i ndow

untrusted capability trusted capability

Figure 2: Window not running any untrusted software.

Top Secret- Trusted Software boundary

--'-- -- Top Secret

Untrusted Software boundary

Figure 3: Window that is running untrusted software.

UNTRUSTED

using : P CAPABILITY

monitoring : WID
known P CAPABILTTY (1)
group GROUP (2)
class STP (3)

known Q using n untrusted caps (4)

(1&4) All untrusted software is monitored by a window. A subset of the
capabilities that the untrusted software is using will be untrusted
capabilities that are known to the monitoring window.

(2&3) Untrusted software will also have a related group of capabilities
associated with it and the classification for this group will be
displayed.

All the known capabilities in the untrusted software will be assumed
to be related and so will all belong to the same group. The
monitoring window will maintain the group and high water mark

Displays 22

classification for this set, which ma) be empty. This wl1l be 'uillx
specified in the followin9 section.

S. The Display

A display consists of windows and untrusted software, together wlth thE rZ-
water marks and related groups information.

DISPLAY

HIGHWATER MARKS
THEWINDOWS

windows F WID
programs F UNTRUSTED

windows Q dom which_window

{ p programs . p.Ld } 9 windows (1

U p, q : programs * p.mcnitorin 9 = q.monitorin9 p = q (2

U p programs .
p.known = if{ p.using, untrusted caps,

whichwindow(p.monitoring).available } r.
U c ; p.known . whichgroup(c) = p.group (4)
p.class = show hwmclass(p.group)

U w : windows .
which_window(w).available n untrusted-caps

Q dom which qroup (E

(1) The programs in the display are monitored by windows in the display.
However, not all windows are montorin9 untrusted projrams.

(Z) Windows can only monitor a single program.

(3) The known capabilities in the untrusted software are untruste=
capabilities that are also available to the mon:tcrin9 window (the
intersection in the diagrams).

(4) All the known capabilities rpfpr to the Brou obJect for the
program, ie they could be related.

(5) The classification displayed when untrusted software is runn'r.9 is
the correct high water mark for the related group.

(6) All the untrusted capabilities in a window will belong to sc-e
related 9roup and hence have a high water mark classificato-.
However, these capabilities are not necessarily related ald so dC
not have to belong to the same 9roup.

ADISPLAY a C DISPLAY' ; DISPLAY I

-DISPLAY a [LDISPLAY I eDISPLAY' = eDISPLAY I

S.6 Display Operations

This section defines the operations that take place in a display which a-e
concerned with the windows and untrusted software. All the operations in Sercus
will in fact be Initiated from a window in a display. However this is not specified
until part 2.

23 Displas

5.6. 1 create a window

Creating a new window does not alter the high water marks or running software.

A new empty window is simply added to the display.

create w indowb4,, C- , P

8DISPLAY
_HIGHLATER_MRKS

newwid : WID
empty_window : WINDOW

new wid 9 dom whichwindow (1)
emptywindow 4 ran whichwindow (2)
empty_.wndow.available = {} (3)

which_window' = whichwindow U { newwid . empty-window }

windows' = windows U { newwid } (4)
programs' = programs (5)

(1&Z) The new window and identifier are unique.

(3) The new window has no capabilities available to it initially. The
window will not be running any untrusted software.

(4&5) The new window is added to the display. No other windows or any
untrusted software is affEcted.

6. 6. 2 call untrusted software

Untrusted programs can only be initiated from a window in a display that is not
already monitoring any untrusted software. A new group object will be created
for this software. All the capabilities known by both the untrusted and the
trusted software will refer to this group to indicate that they could be
related. Initially the untrusted software will have no capabilities available to
it and the classification will be the lowest possible.

Monitoring Window

----- Empty - Bottom
* Group

0/

" Untrusted Software

Figure 4: The window has started to run untrusted software. This
software has no capabilities available to it and the
classification displayed will be the lowest possible.

Displays 2+

run untrustedbas ¢ o1 P

LDISPLAIY

ETHEWINDOWS

wid 92 WID

pros! UNTRUSTED
9roup! GROUP

wid? e windows
wid7 0 { p : programs • p.monitorin9 } (1

group! 0 dom hwm_class (2)
which-group' = which._group
hwmrclass' = hwm_class U { group! . bottom }

pros! 0 programs (3)
pro9'.usiln9 = {}
prog!.9roup = 9roup!
pros'.class = show bottom
pro9.monitoriln9 = wid ?

windows' = windows (4)
programs' = programs U { pros! }

(1) Only an existing window that is not already monitoring untrusted
software can start to run the program.

(2) A new group object is created, and added to the high water ma'ks
function with a classification of bottom. Initially there are no
capabilities belongn9 to the 9roup (and hence the which__qojp
function is unchanged).

(3) A new untrusted program is created. Initially this has no
capabilities available to it. The 9roup for this software is the ne"
9roup object.

(4) The new program is added into the display. No windows or existinz
programs are affected by the operation.

5. 6.3 add to untrusted

This operation takes capabilities from a window that is running an urt-usted
program and makes them available to the software. This could be viewed as a
'cut and paste' operation or as passin9 parameters to an untrusted funt~o.
This operation does not necessarily take place between the software and th e
window that is monitoring it. The untrusted software could be in a comPIeLe_>

separate window. Note that for simplicity all the following d;agrams illustrate
the first case.

2S Di sCiL', s

Bottom

Empty -- ~Bottom
* Group

- Restricted

--------- s Secret

Figure Sa: The state of the window after starting to run an
untrusted program and prior to passing capabilities to
the untrusted software.

Restricted

r- J Restri cted

Figure Sb: The state of the window after one trusted and one
untrusted capability have been added to the untrusted
software.

A new group object will be created. All the untrusted capabilities being added
to the software are made to refer to this group. Any capabilities that could
also be related to these must be made to refer to the new group as well.
However these extra capabilities may not in fact be available to the untrusted
program, the worst case is always assumed.

SSecret

Figure Sc: After a further untrusted and two trusted capabilities
have been added.

Displays 26

9gi ve to untrustecib., Cop

ADISPLAY
ETHEWINDO0WS

wid7 : WID
prog9 : UNTRUSTED
caps? F CAPABILITY

group! GROUP
groups! : P GROUP
prog! : UNTRUSTED

wid7 e windows
pro9 E programs (1
caps7 9 whichwindow(wid7).available (2)

groups! = whichgroup (caps7 (3)
group! 9 dom hwmclass (4

prog! g programs
prog!.usin = prog9 .usin g U caps 7

prog!.known = prog?.known U (caps? n untrusted_caps
prog!.monitoring = wid?
prog!.group = group!
prog!.class = show hwmclass' (group!

which group'(dom(whichgroup 1> groups!)) { group! } (D)
whichgroup' 0 groups! = whichgroup Ei groups! (7)

dom hwmclass' = (dom hwmclass \ groups!) U { group! } (E)
hwmclass'(group!) = LUB { g: groups! * hwm class(9) } (9)
(groups! U { group! }) I hwmclass' = groups' q hwmclass (10)

programs' = C programs \ { prog' }) U { prog! } (1±)
windows' = windows

(1) The window and program must be in the display. However the program
is not necessarily being monitored by this window.

(2) All the capabilities being given to the software are available to the
window.

(3) This defines the set of' related groups that all the capabilities
being given to the software belong to.

(4) A new group object is created. This will give the new related group
and high water mark for the untrusted software.

(S) A new untrusted program is created. This has the same capabilities
available as the program the window is running plus the neo
capabilities. The window monitoring the untrusted does not change.

(60?) All the untrusted capabilities being added, and those that they 2-E
related to, are made to refer to the new group. All other related
sets are unchanged.

(8-10) The new group replaces all the original groups in the high water
mark classifications relation. The high water mark for this new
group is the least upper bound of all the classifications of' the
original groups.

27 Displays

(11) The new program replaces the original one in the display. No windows
are affected.

5.S64 take from untrusted

This operation takes capabilities from the untrusted software and adds them to
a trusted window, but not necessarily the window that is running the program.
This set of capabilities will be assumed to be related and will be given the high
water mark classification associated with the untrusted software. This could be
viewed as either a 'cut and paste' operation or as returning the result of an
untrusted function.

Confidential-

Con - etia
Figure Sa: The state of the window before the operation.

Confidential-

A-- Confident ial

Figure Gb: After an untrusted capability has been given to the
monitoring window.

Displays 28

take_from -untrusteda$,cop

ADISPLAY

wid? WID
pros? UNTRUSTED
caps? • CAPABILITY

extra! F CAPABILITY
window! WINDOW

wid? e windows (1)
pros? e programs (2)
Caps? c prog?.using (3)

extra! = caps? n untrustedcaps
n (prog?.using \ progg.known (4)

window! 0 ran which window
window!.available = whichwindow(wid?).available u extra'
which-window' = whichwindow * { wid? - window! } (5)

whichgSroup' I extra!) = { prog?.group }
extra! 4 whichSroup' = which-group (6)

hwm_class' = hwm class
windows' windows
programs' programs

(1-3) The window and program are in the display (but the window is net
necessarily monitoring the program). All the capabilities are
available to the software.

(4) This defines the set of untrusted capabilities being given to the
window that it was not previously aware of.

(S) A new window is created. The capabilities available to this window
are those available to the initial window, plus these extra
capabilities. This new window replaces the previous window.

(6) The extra capabilities now belong to the group for the untrusted
software. No other groups are affected.

5.6.5 complete untrusted

This operation destroys the untrusted program that a window is monrtorinc. Th s
can be viewed as returning from an untrusted function call, and will probat-ly
only be done when results have been given to the window by the
'take_-romuntrusted' operation described in the previous section. No wirdzc-,s
or high water marks are affected by this operation.

29 Dsplays

-SSecre

Figure ?a: The state of the window before the operation.

Figure 7b: After the untrusted program has finished.

complete__untrusted 6aSic C OP

8DISPLAY
zTHE-WINDOWS
=HG-AE-AK

pros? :UNTRUSTED

pros? e programs

programs' =programs \{Pros?}
windows' =windows

Displays 30

6. Storing Capabilities

6. 1 Introduction

Capabilities may be kept in a cupboard. A cupboard is simply a relati-s- P
between names and the capabilities they represent. These names are

represented by printable character strings. Cupboards are similar tc

dictionaries or directories.

Any type of capability may be kept in the cupboard. However, when capabilites
to untrusted objects are stored, they must be first copied to avoid the
problems of related sets (refer to section 5.2), and the high water rnark

classification must be remembered as well.

6.2 Cupboards

CUPBOARDF name STR - CAPABILITY (1
class CAPABILITY -- CLASS (2)

dom class = (ran name) n untrustedcaps (3)

(1) The relationship between names and capabilities is a function
because each name can only refer to a single capability. The
function is partial beacuse not all strings are used. There are no
restrictions concernin9 namin9 capabilities more than once in the

cupboard.

(2) The 'untrusted capabilities to classifications' relationship is a
function because there is a single classification for each
capability. The function is partial because only some capabilities
are kept in the cupbaord.

(3) The cupboard keeps a classification for all the untrusted
capabilities that are stored.

8CUPBOARD a [CUPBOARD' ; CUPBOARD I

ECUPBOARD a [&CUPBOARD I eCUPBOARD' = eCUPBOARD I

6. 2 Cupboard Operations

An empty cupboard is defined. This is a cupboard with no named capabilities a-,

consequently no stored classifications either.

cr eat e empt y cupboard

F emptycupboard : CUPBOARD

empty cupboard.name = {}

The simple operations on a cupboard are find and keep.

Looking up a name in a cupboard will return the stored capability, and if ths is

31 Cupboards

an untrusted capability the associated classification as well. The contents of
the cupboard wi1 be unaltered.

f lind utted -

ECUPBOARD (1) 'CUPBOARD (1)

name? STR name? : STR

cap! CAPABILITY cap! : CAPABILITY
class! : CLASS

cap! = name(name?) (2)
cap! e trusted_caps cap! = name(name?) (2)

cap! e untrusted__caps

class! = class(cap!) (3)

(1) The cupboard is unaffected by find.

(2) The capability returned is the the one that was stored with the
given name.

(3) If the capability is untrusted, the correct classification is
returned.

Keeping a capability in the cupboard adds the capability, and the classification
if it is an untrusted capability, under the supplied name.

keept.4us ea

LCUPBORRD

name? STR
cap? CAPABILITY

cap? e trustedcaps
name? E dom name (1)
name' = name U { name? cap? } (2)

keepu~, ted

ACUPBOARO

name7 : STR
cap? : CAPABILITY
class? : CLASS

cap? e untrustedcaps
name? g dom name (1)
name. = name U { name? cap? } (2)
class' = clasi U { cap? class? } (3)

(1) No capability has already been stored with the supplied name.

(2) The new name-capability relation is added to the cupboard. No other
relationships are affected.

(3) If the capability being added is untrusted, its classification will
also be remembered. No other classifications are affected.

Cupboards 32

Note that what is in fact kept in the cupboard will be a capability to
a copy of the object. This removes the problem side effects due to
operations involving related sets of capabilities, and is ully
specified in part 2.

33 Cupboa-ds

7. Users

7. 1 Introduction

As in the paper world users can have specific roles. In Sercus the special kinds
of users are 'system security officers' and 'registry clerks'. Only registry
clerks will be able to create new files and only security officers will be able
to regrade documents and files. Security officers will also be able to change
users clearances and create new users.

These specific roles in Sercus will be indicated by a user having a clearance
which dominates the particular classification.

sso CLASS
clerk CLASS

For example, users are registry clerks if their clearance dominates the clerk
classification.

?,Z The Users of Sercus

I PASSWORD I
Users of sercus will have a password, which is taken from the given set, a
clearance and a cupboard in which to store capabilities.

USER

password : PASSWORD
clearance CLASS
cupboard : CUPBOARD

[UID]
Users can be uniquely identified by a UID taken from the 9iven set. At least one
of the users must be a system security officer.

THE_USERS

whichuser: UID . USER (1)

mydisplay : UID . DISPLAY (2)

dom my-. display c dom which-user (3)

1) a, b : ran my-display •
dom a.hwmclass n dom b.hwmclass x {} a = b (4)
a.windows n b.windows s {} 4-* a = b (5)

U x, y : ran which-user •
x.cupboard = y.cupboard * x = y ,6)

3 sec : ran whichuser • sec.clearance > sso (7)
1I

The domain of the which_user function gives the set of all valid user
identifiers, ie the legal users, and the range all the users. Similarly the
range of the mydisplay function gives all the valid displays.

(1) Since the relationship between the user identifiers and the users is
a function, there is a single user associated with each identifier.

Users 31+

The function is partial so that new users can be added I-

system and or +n one so that each user has a sin El ident. Fer.

(2) The display will be frequently altered by the operations that users
perform. Hence there is a mapping from users to their displays.
The relationship is a function because each user can only have 2

single display, partial so that new users can 1o9 in and one to one
so that each display only belongs to a single user.

(3) Not all valid users need have a display associated with them.
Obviously, the users who are not currently logged in will not have a
display.

(4) This predicate states that no two users can have the same group
object associated with their displays. Group objects define the
sets of related capabilities. This means that only a single user can
have a capability for an untrusted object, and hence that users
are not related.

(S&6) Users cannot share windows or cupboards.

(7) There must be at least one security officer.

6THEUSERS a [THEUSERS' ; THEUSERS I

_=THEUSERS e [8THEUSERS I eTHEUSERS' = eTHEUSERS I

There will be a group of users who are currently logged on to Sercus. These
must be valid users, ie have a user identifier associated with them.

USER_STATE

THEUSERS
logged_in : F UID (1)

loggedin c dom whichuser (2)

dom mydisplay = logged_in (3)

(1) Users can only be logged in once, and hence this is a set.

(2) Only valid users may use Sercus.

(3) All the logged in users, and only these, will have a display
associated with them.

6USERSTATE e [USERSTATE' ; USER STATE I

EUSER_STATE a [AUSERSTATE I eUSER_STPTE' = eUSERETATE]

7. 3 User Operations

This section describes the basic user operations such as logging in and out. The
filing system and display operations described earlier will also be performed by
users, but this will be specified in part 2.

A facility to explicity delete the users of Sercus will not be provided. Instead
there will be an 'authorised' classification. Users will only be able to log on if

3S Use-s

their clearance dominates this classification. Changing a users zlearance so
that it is dominated by 'authorised' will therefore effectively remove them.

I author ised : CLASS

7.3. 1 create a new user

To create a user. a new identifier. password and clearance must be supplied. A
new user with this password and an empty cupboard is added to the valid users,
ie the which_user function. New users will not be logged on so will have no
displays associated with them. No other users are affected.

create--user has icop

AUSERSTATE

uid? : UID
password? PASSWORD
clearance?' CLASS

new user! USER
create emptyjcupboard

uid'7 9 dom which user (1)
new_user! 9 ran which-user (2)

new_user'.password = password? (3)
r~ew_user .clearance = clearance?
new_user'.cupboard = emptycupboard

which-user' = which-user U { uid? . newuser! } (4)
mydisplay' = mydisplay
loggedin' = logged_in

(1&2) The user identifier and user do not already exi-t.

(3) The new user is given the supplied password and clearance, and an
empty cupboard.

(4) The new user becomes a valid user, and no other users are
affected.

Note that the ability to create new users is resticted to the
system security officers, and is fully specified in part 2.

7.3.z lo _i

To log onto Sercus a user identifier and password must be supplied. The user
must be authorised to use Sercus, cannot already be logged on and must supply
the correct password.

create_initialdisplay

USERSTATE
create window ba ic - o p

initial_display : DISPLAY

initial display 9 ran myAdisplay
initial_di splay.windows { newwid }
initial display.programs = {}

Users 36

0lo in bas I.C- op

AUSERSTATE

uid ? : UID
password? : PRSSWORD

create_ initial display

uid? 0 loged_in (1)
whichuser(uid ?).password = password ? (2)
whichuser(uid ?).clearance 2 authorised (3)

whichwindow' = which-window U { new wid - empty-window }
my-display' = my-display U { uid? - initial_display I (4)

logged_in' = loged_in U { uid ? } (5)
whichuser' = whichuser

(1) The user is not already logged on.

(2&3) The supplied password must be correct, and th"_ user must be
authorised to use the system.

(4) The display for this user consists of a new window which has nc
capabilities avalable to it. No other displays are altered.

(S) This user is now added to the set of logged on users. No other
users, nor any passwords or clearances are affected.

7.3.3 lo out

In order to log out, users must obviously be logged in. The user dentiier a-,_-

display are simply removed from the loggedin set.

- Iogout 6 s, _o

AUSERSTATE

uid ? : UID

uid? e loggedin

my-display' = { uid ? } e my-display (1)
whichuser' = whichuser (2)

log9ed_in' = loggedin \ { uid? } (3)

(1) The users display is deleted.

(2) No passwords, clearances or cupboards are affected.

(3) The user is removed from the log9edin set.

7.3.4 change clearance

Users may have their clearances reviewed by the security of'icer. Fo-

37 Users

simplicity of implementation, clearances may only be changed when users are
not logged on.

change-clearance 6 as iop

6USERSTATE

uid? : UID
clearance? : CLASS

user! : USER

uid? e dom which_user
uid? 9 lo99ed_in (1)

user!.clearance = clearance? (2)
user!.password = whichuser(uid?).password
user!.cupboard = whichuser(uid?).cupboard

whichuser' = which-user * { uid? user! } (3)
my-display' = my-display

loggedin' = loggedin

(1) Users clearances can only be changed when they are lossed out.

(Z) Only the particular users clearance is changed.

(3) No other users are affected.

7.3.5 change password

Users may alter their password.

change-passwor db ,,,_,

8USER_STATE

uid? : UID
password? : PASSWORD

user! : USER

uid? e dom whichuser
uid? e logged_in (1)

user!.password = password? (2)
user!.clearance = which user(uid?).clearance
user!.cupboard = whichuser(uid?).cupboard

which-user' = which-user * { uid? .. user! } (3)
mydisplay' = mydisplay

loggedin' = loggedin

(1) Users must be logged in to change their password.

(2) Only the user's password is changed.

(3) No other users are affected.

Users 38

B. Messages

8. 1 Introduction

Sercus will allow simple mail messages to be sent to users. These mESSE ES
will be used by the users to request operations from the registry cler-ks c-
security officer and possibly also to send documents and files to other Lse-S.

8.2 About Messages

A message contains capabilities and an indication of which user sent the mess-ae
and when. The textual part of a message is uninteresting as far as tns
specification is concerned.

MESSAGE

message : F EAPABILITY

from UID
time TIME

message 9 trustedcaps (1)

(1) Messa9es may only contain capabilities for trusted objects, such Fs
documents and files.

Note that untrusted capabilities could be sent if the objects were
copied first. However for the purposes of Sercus, messages as
specified should be sufficient.

8. 3 Mal

The mail system in Sercus relates messages to the recipient.

MAIL

mail MESSAGE UID

8NAIL MAIL' ; MAIL I

EMAIL a I 8MAIL I BMAIL' = 8MAIL I

8.4 Mail Operations

Sending a message involves supplyin9 some capabilities, and the apprcp ,ats
user identifiers. Both trusted and untrusted capabilities will be used to c'ee'e
a message, the contents of the untrusted ones making up the uns;eci',eb
textual part of the message.

39 messEs

sendbas i c .op

8MAIL

caps? : F CAPABILITY
me?, to? :UlO

messase! :MESSAGE

message! 9 dom mail
message!.messase = caps? n trusted caps (1)
message!.from = me'7
message!.time = timenow

mail' = mail U { message! to? } (2)

(1) A new messase is created which contains only those capabilities
which are trusted.

(2) This messase is added to the mail system. No other messages are
affected.

This operation opens the next messase for the particular user. Opening a
messase simply makes the capabilities available.

open--next--messageba siop

6MAIL

messase? : MESSAGE
me? : UID

caps! : F CAPABILITY

mail(messase?) = me? (1)

0 m : dom (mail D, { me? }) I m x message?
message?.time 5 m.time (2)

caps! = messase?.messase
mail' = C message? } 4 mail (3)

(1) Messases may only be opened by the user they are destined for.

(2) Messases are opened in the order in which they were sent.

In order to avoid the difficulties of two messages being sent at the
same time, it is assumed that either time is defined with sufficient
granularity to prevent this, or that the mailing system software
will randomly choose between messases with identical times. Since
the 'S' operator is not fully specified it could do this random
choosins.

(3) The opened messase is removed from the mail system.

Messases 40

9. Journallins

C EVENTTYPE I
Security critical operations are recorded in a journal. This is a sequence V

events, which are taken from the given set, together with the identity o the
user who caused the event to occur and when it happened.

EVENT

Sevent : EVENT TYPE
causedby : UTD
time : TIME

The types of event journalled can be partioned into three.

document _events, fileevents, userevents : F EVENTTYPE

documentevents, file_events, userevents)

partition EVENTTYPE

The possible journalled events are:

documentcreated, document-opened, document regraded,
filecreated, filere9raded,
user_created, clearance_changed, : EVENTTYPE

document_events =
{ document created, documentopened,document_regraded }

-i file-events = { file created, file regraded }

user_events = { usercreated, clearancechanged }

A journal is an ordered sequence of events.

JOURNAL_I journal : seq EVENT

U i, j : dom journal I i < j

journal(i).time _5 journal(j).time (1)

(1) The journal is ordered on time.

Operations can add an entry to a journal, but never remove or replace ex'stinh
entries.

6JOURNAL

JOURNAL'
JOURNAL

#journal' = #journal A journal' = journal
v

#journal' > #journal A front(journal') = journal

EJOURNAL e [AJOURNAL I eJOURNAL' = eJOURNAL]

41 Journallin9

9. 1 Journallin9 the Filing System

All the documents and files in Sercus will have a journal associated with them,
although this cannot be insisted upon until part 2.

JOURNAL_DOCS

documentjournal : CAPABILITY). JOURNAL (1)

dom documentjournal c caps.jordocs

U j ran document_journal •
{ e : ran j.journal . e.event } c document_events (2)
#j.journal a 1 (3)
j.journal(1).event : documentcreated (4)

The documentjournal function maps the document capabilities to their journals.
The domain of this function will be all the capabilities for documents so far
created.

(1) The relationship between documents and journals is a function so
that each document has a single journal associated with it. The
function is one to one because each document has a unique journal,
and partial because not all the possible documents have yet been
created.

(2) Only document type events can be in a document journal.

(3&4) There must be at least one event in any document journal, and the
first event will be its creation.

8JOURNALDOC5 a [JOURNAL_DOCS' ; JOURNAL_DOC S

EJOURNAL_DOCS a E AJOURNALDOCS I 8JOURNAL_DOCS' = eJOURNAL_DOCS I

Similarly for files:

JOURNALFILES

file-journal : CAPABILITY ". JOURNAL

dom filejournal z capsi.or-iles

U : ran file_journal •
{ e : ran j.journal * e.event } Q fileevents
#j.journal 2 1
j.journal(1).event = filecreated

AJOURNALFILES a (JOURNALFILES' ; JOURNAL_FILES I

-.JOURNAL_FILES a [6JOURNALFILES
I SJOURNAL.FILES' = 8JOURNAL_FILES I

Adding to a document or file journal will always involve a capability to a
document or file as appropriate, a user identifier and an event type.

Journalling 42

document op jour naIled

8JOURNALDOCS
8JOURNAL {this defines how the journal is changed}

doccap? : CAPABILITY
event? : EVENTTYPE
caused-by? : UID

documentjournal(doccap?) eJOURNAL (1)
document.journal' document journal e { doccap7 - GJOURNqL' }

journal' = journal ([EVENT I event = event? (2J
caused by = caused-by?
time = timenow I)

(1) Only the particular journal is changed.

(2) A new entry is added to the particular journal with the supplied

event and user identifier. The time is set to be the current time.

Similarly for adding to a file journal:

file _o p_ _IIad

6JOURNAL_FILES
6JOURNAL

file_cep? : CAPABILITY
event? : EVENT TYPE
caused by7 : UID

filejournai(file cap?) = OJOURNAL
file-journal' = file-journal % { fle cap? - BJOURNAL' }

journal' = journal [EVENT I event = event?
caused-by = caused-by?
time = timenow

Whenever files and documents are created a new journal will be created and
added to the appropriate journallin9 function.

create_documentop.our na

LJOURNAL_DOCS

new-cap? : CAPABILITY
causedby? : UID

journal! : JOURNAL

journal! 0 ran documentjournal (1)
documentjournal' = documentjournal U { newcap72 journal! }

journal! = ([EVENT I event = document _created (2)
caused-by = caused-by?
time = time now] } I

(1) A new journal is created and added to the document journal
function. No other journals are affected.

43 Journallinc

(2) The new journal contains a single event. This is a
'documentcreated' event, with the supplied user identifier and
current time.

Similarly for files:

create3f i le-OpJo, a,,ll d

6JOURNAL FILES

new-cap? : CAPABILITY
caused-lby' : UID

journal! : JOURNAL

journal! ran filejournal
file journal' = filejournal U { new_cap? . journal! I

journal! = [(EVENT I event = file_created
caused_by = caused-by?
time = timeno)

9.2 Journallin9 the Users

There is a journal associated with each user identifier. The journal for users
will record creation and changes in clearances and the user identifier of the
user who performed the change. Logging in and out and changing passwords are
not journalled in this example system, as it will not demonstrate anything new.

JOURNAL_USERS

user-journal : UID x+ JOURNAL (1)

U j : ran user_journal .
{ e : ran j.journal • e.event } a user_events (2)
#j.journal Z 1 (3)
j.journal(1).event = usercreated (4)

(1) The relationship between users and journals is a one to one function
because users have a single unique journal associated with them,
and partial because not all the possible users have yet been
created.

(2) Only user type events can be in a user journal.

(3&4) There must be at least one event in any user journal, and the first
event will be creation of the user.

8JOURNAL_USERS a C JOURNAL_USERS' ; JOURNAL_USERS I

zJOURNAL_USERS a I 6JOURNAL_USERS
I eJOURNAL._USERS' = eJOURNAL_USERS I

Journall ing 44

As for documents and files user operations will add to the journal.

user -pjouriialledFJOURNAL_USERS
8JOURNAL

,:ser7 ID (1
causedbhy : UID (2)
event? : EVENTTYPE

user _journal(user?) = 8JOURNAL
user.journal' = userjournal * { user? - eJOURNAL' }

journal' = journal I EVENT I event = event ?

caused-by = caused by
time = time-now

(1) This is the user that the operation is performed on.

(2) This 9ives the identifier of the user who per-ormed the operaton.

As for documents and files, whenever a new user is created a new journalk ::
be added to the journallinS function.

create user-opi our rtal led

AJOURNAL_USERS

new_user7 , caused y? : UID

journal! JOURNAL

journal! ran userjournal
user-journal' user-journal U { new_user? . journal! I

journal! = ([EVENT I event usercreated
caused-by = caused-by?
time = timenow))

45 Journallins

Part 2

The previous sections described the various components of Sercujs
independently, ie the documents and files, displays, cupboards, use-s,
messages and journals. The remainder of the document defines how these Eas z
operations are performed by the users and initiated from one of the windows in
their display. Further constraints will be added to the basic operations as the
system is built up.

Trusted capabilities are those that refer to files and documents.

I caps_fordocs U capsfor_files trusted-caps
capsforanon = untrustedcaps

-W I -II - - -.1 . -

18. The Journalled Filing System

Many of the filing system operations described earlier (section 3.6) will result
in a journal entry being added to the appropriate journal. To this end the
journalled filing system is defined, and all the basic operations will be
performed on this system rather than the filing system alone.

JOURNALLEO_FILINGSYSTEM

FILINGSYSTEM
JOURNALDOCS
JOURNAL-FILES

dam document_journal = dam which_doc (1)
dom filejournal = dam whichfile (2)

(1&Z) All the documents and files in Sercus have a journal associated with
them.

AJOURNALLEDFILING-SYSTEM a [JOURNALLEDFILINGSYSTEM';
JOURNPLLEDFILING SYSTEM

zJOURNALLEDFILING_SYSTEM a I AJOURNALLEDFILINGSYSTEM;
eJOURNALLED_FILINGSYSTEM'
= eJOURNALLED_FILING_SYSTEM]

The following schemas define all the basic filing system operations to take
place on the journalled system, These operations will either involve no change
to any journals, or will simply add an event describing the operation to the
appropriate journal,

create_document o urnalleda

create_document,,,,,-,, >> create_documentoPjour.aled

A EJOURNAL_FILES

create file jouo'nlled a

createfi lebas oop >> createfi le OPjouralled A EJOURNALDOCS

regrade-document journalled -" regrade_file journalled

8JOURNALLED_FILINGSYSTEM LJOURNALLEO_FILINGSYSTEM
EJOURNAL_FILES JOURNL_DOCS

document opj our nal led f i 1e-opior., l.,

regradedocumentias io. regradef i leba C _o,

event? = document_regraded event? = file recraded

Journalled Filing System 47

read-document.junle

8JOURNALLED FILINGSYSTEM
ZJOURNALFILES

document op U. . led

reac_ document 6 1 As O

evn?= document opened

The following filing system operationr do not result in any j~n~e
information:

regrade-file _title J MI I Od a regarde fi lejt itleb,,.C0
A FJOURNALLEDFILINGSYSTEM

Regrading the clasfication of the title of a file is not JournallEC
only because it does not demonstrate anything new. It a largEr
system all changes of isf:tz would be journalled.

add doc _to- fi le irnlld a add..doc_tof file 6bsCO

A EJUNLE-IISSSE

Adding a document to a file is not journalled because all accesses
to each document will still be controlled and journalled as fcr
unf~led documents.

i st _cdr . Ounlld a I tcr Sco A E=JOURNALLEDFILINSSYSTEr

find_document Journ&1ied a f ind_ document6 ,,,

A SJOURNALLEDFILINGSYSTEM

find_filed__document Jorale find-filed.documentba cO

AJ _JLJNLL ILINSSYSTE,-

fieafile contents file

A =-JOURNALLEDFILINGSYSTE-1

The act of aquiring a capability for an object is not jou-nalledl
because having the capability does not automatically allow-
operations to take place. All the relevant acttons will be
journalled separately.

48 Journalled Filmng S>,,ste-,

11.- Journalling Users

Many' of the operations performed upon the users of Sercus. such as changingB
clearances, need to be journalled. To this end the journalled user state is
defined. The user operations defined in section 7.3 will be per-Formed in this
sy'stem rather- than the basic OrI;..

JOURNALLE-OUSER-STATE____________FUSERSTATE
JOURNAL-USERS

dom userjournal = dom which-user p21

(1) All the valid users have a journal associated with them.

6JOURNALLED USER STPTE a [JOURNALLEO UQSER STATE'
JOURNALLEDUSERSTATE

=EJOURNALLEDUSER.STATE a E JOURNALLED_USER_STATE
I9JOURNALLEDUSER_STATE'

-eJOURNALLEDjJSERSTATE

For simplicity, only creatini: users and changing their clearancE.S Nill be
journalled.

create-useri~.Id & create-uer,,,_; uid7 / newue-

A createjjser~~op. jorled

change clearance jo fnl led

change-clearance,,,i, I uid? / user?I
user-.op.iornlI*

event? =clearance-changed

These basic operations need to have the idpntifier of the particular
user renamed to be consistent with the names that the journalling
schemes use.

loi njourmali a losi nVS 1 -0 A EJOURNAL_-USERS

lo9.out journa11*d A log-.out bas ic-op A FJOURNALUSERS

change..passwordj ou * e chanse-.password ba ico A -JOURNAL_-USERS

Journalling Users 4

7)

1Z. Promoting the Operations InvolvinS Capabilities

Operations in Sercus will be performed by the users, or software ruC--, c
their behalf, from one of the windows of their display. The filin 9 syste-,
cupboard and mail operationsF msy alter the set of capabilities available t t1e
window, but will not create or destroy windows and programs. The fcllo-l.z
schema defines this situation.

60 p" pab ,l I $

ADISPLAY {this defines how the display mlters}

window id? : WID {this identifies the particular window}
AWINDOW {this defines how the window alters}
8UNTRUSTED {this defines how untrusted software alters}

windowid 7 E windows (1
GWINDOW = whichwindow(windowid 9 (2)
whichwindow' = whichwindow * { windowid? - LWINDOW' (3)

windows' = windows [4

window_id? { p : programs . p.monitorin9 } (5[
programs' - programs

windowid 9 monitoring - CE
programs' = programs \ { eUNTRUSTED I u { eUNTRUSTED' I
monitoring' = monitoring

(1-3) The window in question is one of those in the display, and it is this,

and only this, window that will be changed by the operation.

(4) No windows are created or destroyed in the display.

(S) If the window is not monitoring any untrusted software then none w-ll
be changed by the operation.

(6) If the window is nonitoring untrusted software then it is this, and
only this, software that will be altered by the operation. The
window continues to monitor the software.

Security critical operations, and some operations that need to be prope-1y
controlled to prevent untrusted software Rxploiting siSnalling channels IS''
must be performed on the trusted path. In a display those windows that are not
running untrusted software form the trusted path. These operations will no-
alter any high water mark classifications or related groups of untruste-

capabilities.

TRUSTEDPrTHcap.baiIwL600
ca Pab i

z=HIGH_WATERMARKS (1)

window_id? 9 { p : programs . p.monitoring } (2)

(1) Operations on the trusted path will not alter any high water marks
or related 9roups of untrusted capabilities.

so

(2) Trusted path windows are only those that are not monitoring any
untrusted software.

Operations are performed by users in one of the windows of their display. The
password, clearance and cupboard will be unalter-ed by the filing system and
mail operations. No other users will be directly affected by these operations
that a user can perform.

(pOP I i ns$ $ t mUSER_STATE

ADPca Pabilit

AJOURNALLEDUSERSTATE
=JOURNAL_USERS

caused-by? UID (this is the user performing the operation>

my display(caused_by?) = BDISPLAY
my-display' = my-display e { caused_by? -. SDISPLAY' } (1)

whichuser' = which_user (2)
logged_in' logSed_in

(1) The display for the particular user will be altered by operations.
No other users displays will be changed.

(2) The password, clearance and cupboard remain the same.

Note that no journalling information about the users is added. This
is because each document and file maintains its own journal of
accesses and regrades.

Some of the operations in Sercus must be performed by specific users, such as
security officers or registry clerks.

SSO A 0 0 fiili.ngsstamUSERSTATE

I which-user(caused_by?).clearance a SSO I

CLERK O OP filing-os.stemUSER-STATE

I which_user(caused by?).clearance _> clerk I

The operations upon the cupboard do not alter the display except by adding
capabilities to the window that the operation is performed from. These
operations are performed by a user, and will not alter the password or
clearance.

S1

J

0 0 PCtP oadUSER-STATE

6USERSTATE

6CUPBOARD {this defines how the cupboard chanses}

causedby" : UID

my display(caused by?) - GDISPLAY
my display' = my-display a { caused-by? - GDISPLAY' } (1)

which_user(causedby?) = BUSER
which-user' = which-user e { causedby? - BUSER' - (2)

cupboard =eCUPBOARD (3)
cupboard' = 8CUPGOED'
password' = password
clearance' = clearance

ioggedin' = lo3Sed_in

(1) The display for the particular user will be altered by operations,
and no others.

(2&3) The cupboard is altered by the operation, but the password acb
clearance remain the same.

52

19. The Operations upon the Filin System

13.1 Filing System Operations in a Display

The journalled filing system operations described in section 10 will be
Performed in a particular window and ciisplay, and may alter the contents of the
window.

The only security critical operations on the filing system are regrading
documents and files. However, it would be inconvenient if Trojan Horses in
untrusted software created files or documents and added documents to files in
a random manner. In fact if other untrusted software cooperated, this could
form a significant signalling channel. To prevent this, these operations can
only be performed from the trusted path.

regrade documentTP-FILING-SYSTEM

TRUSTED_PATH, pab i,

regrade document i our Ma led

doccap? e available (1)
eWINDOW' = eWINDOW (2)

(1) This is the basic regrade operation, together with the constraint
that the document being regraded is available to the window.

(Z) The window is unaltered by the operation.

regrade-f i le FILINGSYSTEM regrade_file_titleTpFILING_SYSTEM

TRUSTED_PATH •ab i I i t TRUSTEDRPTHca p 6 i Iit

regrade fileJ oMlI ad regrade_f i let i tlejo. lied

file cap? e available (1) filecap? e available (1)
eWINDOW' = eWINDOW (2) BWINDOW' = eWINDOW (2)

fl) Th;s is the basic rpgrade operation, together with the constraint

that the file being regraded is available to the window.

(2) The window is unaltered by the operation.

create_f i IeTPFILINGSYSTEN

TRUSTED-PATH, a pb i Ii 1W

create _file ldj pur nalel

doc cap? e available (1)
available' = available U newcap! (2)

(1) This is the basic operation for creating files, together with the
constraint that the document capability is available to the window.

Filing System Operations S3

(2) After the operation the new capability is available to the windo".

adddoc_to file TPFZLINGSSTE

TRUSTED-PATH, ap,, t,
add docto _file

_ __ Journl d

{ doc_cap?, file-cap? I c available (1)
eWINDOW4' = eWINDOW (2)

(1) This is the basic operation, together with the constraint that both

the file and document capabilities are available to the window.

(2) The window is unaltered by the operation.

Creating a document involves supplying both trusted and untrusted caoablities.
The trusted capabilities will be for other documents and will make up the
capability contents of the new document. The untrusted capabilities will be fo-
other objects which will go towards making up the textual contents of the
document. The only important part of the untrusted capabilities as far as tm s
specification is concerned is the high water mark classification.

create documentlP FILING_SYSTErM

TRUSTEDPATH a palit

createdocumEnt rnalled

caps? : P CAPABILITY

caps? c available (1)
contents? = caps? nl trusted_caps (2)
classification" LUB{ c : caps? n untrusted_caps

hwm_class which_group(c) 1 (3)

available' = available U { new-cap! } (4)

(1) All the supplied capabilities are available to the window.

(2) The contents capabilities for the basic operation are the supplied
trusted capabilities.

(3) The classification given to the document must dominate all the high
water mark classifications of the untrusted capabilities that go
towards the document contents.

(4) After the operation the new capability is available to the window.

Reading a document, looking up documents in the cdr or filelist and listing the
contents of a file do not have to be performed from the trusted path, although
they could be. These operations will make further capabilties available to the
window. Reading documents and listing the contents of a file will only be
permitted if the user is cleared to do so. However this cannot be described
until the section 13.2 when users have been further specified.

54 Filing System Operatic-s

find-document FILNGsysrE,

EHIGH_WATERMARKS (1)

find-document 0 .ou .le

window id? = monitoring : (2)
using' = using U { doc__cap! I
class' = class
group' = group
eWINDOW' = eWINDOW

window id? x monitoring m.. (3)
eUNTRUSTED' = eUNTRUSTED
available' - available U { doc.cap! I

find filed-documentFILING-SYSTEM

6
0
Pcapab iii tw

EHIGHWATERMARKS (1)

f ind_fileddocumentj 1 lid

window_id? = monitorin g . (2)
using' using U { doc_cap! I
class' class
group' group
eWINDOW' = eWINDOW

windowmid? x monitoring 4-* (3)
eUNTRUSTED' = eUNTRUSTED
available' = available U { doc..cap! I

I filecontentsFILINSSySTEM

O~capabilitV
EHIGHWAJTERMARKS (1)

file_contentsjournalle

windowid? = monitoring #-o (2)
using' using U caps!
class' class
group, =group
eWINDOW' = eWINDOW

window-id? 9 monitoring (3)
eUNTRUSTED' = eUNTRUSTED
available' = available U caps!

(1) Capabilities for documents are trusted and therefore no high water
marks need be changed as a result of this operation.

(2) If the operation is performed from untrusted software, the
capabilities available to that software are simply increased by the
new capability (or capabilities). The monitoring window is
unaffected.

Filing System Operations SS

(3) If the operation was performed in a trusted path windoc, the
available capabilities are simply increased by the new capabity
(or capabilities) and any untrusted software in the display is
unaffected.

li st cdr FILING-SYSTEM

6OPcapab 10V
I i stcdr journa led

eDISPLAY' = aDISPLAY (I)

(1) Because windows and untrusted software are modelled by the set o
capabilities available to them, listing the cdr does alter the
display.

Opening a document will reveal further (trusted) capabilities. There a-E nc

restrictions as to where this operation can be performed as documents ",1 cl
be able to be read if the users clearance dominates the classificator (tns
will be specified later after users have been introduced, see section 14).

Reading a document from trusted software simply makes the cc-e-ts
capabilities available to the window.

read-document TRUSTED-PATH

OP
capab pbl t

readdocument nailedJ our n11f

window_id?9 { p : programs . p.monitoring } (1)
doccap? e available (2)

available' available U contents! (3)
OUNTRUSTED' = @UNTRUSTED
eHIGH_WATERMARKS' = OHIGH_WATERMARKS

(1.2) The window is not running any untrusted software, and the document
capability is available to this window.

(3) The capabilities available to the window are simply increased by the
contents of the document. No untrusted software or high water
marks are affected.

Whenever a document is opened by untrusted software, the high water mark rra
have to be increased to take account of the classification of the contents. The
following diagrams illustrate this.

56 Filing System Operatio-s

onfidential-

e --- Confident i al

""Secret document

Figure Ba: The state of a window running untrusted software before
opening a document.

SSecret-r

I --I Secret

-..Document Contents

Figure 8b: After opening the document to reveal secret
information.

read-document UNRUSTED

6 0 p" pabiitv ~
read document jounalled

windowid? = monitoring (1)
doccap? e using (2)

using' = using U contents! (3)
known' = known (11)
group' = group
class' = show hwm class'(group
hwmclass' = hwm class * (S)

{ group - whichdoc(doccap?).classificat ion
lub

hwmclass(group
}

eWINDOW' = eWINDOW4

(1&2) The window is running the untrusted software, and the document
capability is available to the untrusted program.

(3) The capabilities available to the untrusted software are increased
by the contents of the document.

(4) No capabilities are added to the monitoring window.

(S) The high water mark for the untrusted software will be the least
upper bound of the initial classification and that for the document.

Filing System Operations 57

The complete operation is specified to be either of the above:

read documentFILING SYSTEM a read documentTRUSTED-PATH

V

readdocument UNTRUSTED

13.2 Filing System Operations Periormed by Users

The filing system operations are per-Formed by users in one of the windows or
their display, and do not alter cupboards, passwords or clearances. Certain cf

these operations must be performed by specific users.

regrade_document USER e regrade-documentTPFILINGSYSTEM A SS3

regrade file USER a regradefileTPFILING-SYSTEM A SSO

resrade_file_titleUSER a regrade fi le-t itlep FT LING SYSTEM A SSO

create document USER e create_.documentTPFILNGSYSTEM

, (DoP 1 f ingsi _stemUSER-STATE

create fileUSER a create file TPFILING6SYSTEM A CLERK

add _octo f i leUSER e adddocto fi leTP_FILING_SYSTEM

A I
0

Pf1ing. -_i$stemUSERSTATE

f inddocumentUSER e finddocument FILING-SYSTEM A OP

find_filed_documentUSER A find-filed documentFILING-SYSTEM

A 00Pfling _syste mUSERSTATE

list-cdrUSER istcdrFILING SYSTEM A OOP, (imq_swstemUSERSTATE

readdocument USER

fI0P iling-sustemUSERSTATE

read document FILING-SYSTEM

which-user(caused-by).clearance 2!
which_doc(doc cap').classification (1)

(1) In order to read a document, the users clea,-ance must dominate
the classification of the document.

58 Filng System Operat ions

fi le__contentsUSER

,OP f i nq_$Ws*t mUSER_STATE

file contentSFILING-SYSTEMl

whichuser(caused_by?).clearance a file. classification (1)
where

file ran whichfile I title = title?

(1) In order to list the contents of a file, the users clearance must
dominate the file classification.

Filing System Operations 59

If. The Operations upon Cupboards

14.1 Cupboard Operations in a Display

The basic operations on a cupboard, see section 6.3, will be performed in a
display.

The actions of the find operation depend on whether the operation is ,nvoed
from trusted or untrusted software and the trustworthiness of the particar2-
capability. There are four cases, which are illustrated and specified belcw.

UPBOARD -Trusted Path-
one S

two - -41- Restricted

three
Secret

Fi,.ure 9a: A trusted path window prior to looking up an untrusted
capability in the cupboard.

UPBOARD -Trusted Path-
one 0 0

two * . . ---- Restr icted

t hree e ..

Secret
s. -- Secrct

Figure 9b: Trusted path window after adding an untrusted capability
from the cupboard.

find __p

TRUSTED-PATH, pab 1iitw

f i nd, ,l

which-roup' = which-sroup U { cap! - new group } (1)
hwmclass' = hwm class U { new-group -. class! }

available' = available U { cap! }
where

new-group : GROUP I newSroup 0 dom hwm_class

(1) A new related 9roup object is created for this capability and given
the high water mark classification taken from the cupboard. The
new capability is made available to the window. No untrusted
software or other windows are affected.

60 Cupboard Operations

UPBOARD, -Restricted
one

& - , - - -b._ , --- R s ric etwo * 0- Restricted

three
Secret

Figure 10a: The situation priior to untrusted software looking up an
untrusted capability in the cupboard.

UPBOARD 'Secret
one

two Secret

three '
Secret •_ _

Figure leb: After adding an untrusted capability from the cupboard.

find.

f ind,,tru 19A

eWINDOW' = eWINDOW
using' = using U { cap! } (1)
known' = known
group = group
class' = show hwm_class'(group
which~roup' = whichgroup U { cap! , 5roup } (2)
hwm class' = hwm_class * { group (hwm class(group

lub
class!) }

(1) The new capability is added to the set that the untrusted software
is using. The monitoring window is unaffected.

(2) The new capability is added to the related group for that software,
and the high water mark is increased as appropriate. No other high
water marks or groups are affected.

Cupboard Operations 61

W ~ -- 7

W'he-ever trusted capabilities are taken from the cupboard no hshi watEr ma-S

or related groups need be altered.

f ind1 1 p

TRUSTEDPATH, aP& 1.1TW

f ind1 tuted

available' = available U { cap! 1 (1)

(1) The capability from the cupboard is made available to the window.,
and no high water marks or untrusted software change.

f ind1

80Cp pb ii t

fin trse

eHIGHLAJTER_'1ARKS' = eHIGHL4ATER_!$ARKS
using' = using U { cap! I 1
known' = known
group = group
class' = class
eWINDOW = eWINDOW

(I, the capability from the cupboard is added to those available to th-e
software. The monitoring window and high water marks are
unaffected.

The complete find operaticr is one of the four cases.

find DISPLAYe inutp v f ind lp v f ind. v f ind,

It would be a signalling channel if untrusted software could store capabilities ir
the cupboard, so this operation must be performed from the trusted path-. Nc
untrusted software will be affected by storing capabilities, except in that thE
capability can now be found by software with access to the same Cupboard.

keep._ _

TRUSTED_FRTH,.pbjIt,

copy-anon (1)
keepurtrusted

original? E available n untrusted caps (2)
cap'? = copy!
class?7 = hwm class(whichgqroup(original?7) (3)
eWINDOW' = eW INDOW

(1) In order to remove the problem of the related sets (see sectio-i
5.2) whenever untrusted capabilities are stored, what is in fact
stored is a capability to a new object with a copy of the original's
contents.

62 Cupboard Operatiors

J

(2) The capability beinS kept must be one of those available to the
window.

(3) The classification that is kept with untrusted capabilities must be

correct.

keep t

TRUSTEO-PATHcapab i ty

keeplsu tld

cap? e available n trustedcaps (1)
GWINDOW' = 8WINDOW

(I) The capability bein9 kept must be one of those available to the
window.

The complete operation is either case.

keepISPLAY a keep, v keep,

is. Cupboard Operations Performed by Users

Te Cu udrQ- operations will be performed by any of the users of Sercus in one
of the windows of their display.

f i nd uSER a f i ndISPLAY A 4)OPC UPboadUSER-.SATE

keep USER a keepDISPLAY A OOPCuPb oarUSERSTATE

Cupboard Operations G3

15. The Operations upon the Mil System

is. I1 Mail Operations Performed in a Display

The mail operations will be performed in a window of a display. No high '
marks or untrusted software are altered. In order to prevent untrustEz-
software usin9 messages as a signalling channel, the message operations r7rs

be performed from the trusted path.

send message ISPLAY

TRUSTED PATHaplit,

sendbas .Cop

caps ? c available (1)
eWINDOW' = eWINDOW (2)

(1) The capabilities makin9 up the message must all be aval!aile to tie
window.

(2) The window is not altered by the operation.

open next .messageD I SPLAY

TRUSTED-PATHcapa~i ili

open-next-messageba s.op

avail _ble' = available U caps! (1)

(I) Opening a message will make its capabilities available to the wndo.
These capabilities are all trusted, and therefore no hih water
marks or related groups need change.

IS. Mail Operations Performed by Users

The mail operations may be performed by any user of Sercus. As for the firn
system operations, only the capabilities available to the displav of th'e

particular user may alter. The password, clearance and cupboard carrzt
change.

send messageuSER

IOP~i i g s 1 amUSERSTATE

send_ messageD I SPLAY

me? = caused by? (1)
to? E dom whichuser (2)

(1) The user identifier for the sender of the message will be correct.

(2) Messages may only be sent to valid user!.

64 Mail Operations

- -
V. - - - W - -

open -ext meSSaSeUSER

DOP fil , g$ teaUSERSTATE

o pen n e x t_messageo I SPLAY

me? = caused_by (i)

(1) A messaSe may only be opened if the message is destined f or the
owner of the window.

Mail Operations GS

16. Promoting the Operations Involving a Display

The operations that alter the windows and software in a display wll alsc bE

initiated from one of the windows in the display. The following schemras d~
this situation.

8DISPLAY

window_ id" : WID
8W.INDDOJ
6UNTRUSTED

window_ d 77E windows
GW~INDOWJ which window(window_ id?
GW.INDOW.' =which -window'(window.id?

As for the 8OP schema the particular displax and wndc-.

that the operation is performed from are defined. This schema, does
not define how the untrusted! software and, w:7njows are2 alter ed as
this is defined in the basic operation schemas.

TRUSTED PRTH disPla~oLAOP ds P I
EHICHL4ATERMARKS

window_ id*" it { p :programs . p.monitoring

The Operations upon a display are performed by a user. Users may on'ly 2.E'

their own display, and no others. No passwords, clearances or cupboards w1

be affected by the operations upon the display.

iDOP dlI p1&aUSER_.STATE

8p1 ~
6JOURNALLEDUSERSTATE
"ZJOURNALUSERS

caused-by? UID

my..display(caused-by?~) DeISPLAY
my--display' = my-display *{caused-by? G- DISPLAY' 1 (1)

which-user' = which-user (2)
logged_in' =loggedin (3)

(1) The display for the particular user will be altered by operations,
and no others.

(293) Operations upon the display do not alter the password, clearance
or cupboard of any users, nor the set of' logged in users.

66

17. The Operations upon the Display of a User

17. 1 Display Operations performed From a Display

The operations on a display described in section S.6 will be initiated from one o-f
the windows of a display. These schemas combine the basic operation with the
schema that defines operations to take place in a display, and ties the
components together.

createw windowDSLAY

TRUSTED-PATH d is Pl ay

create-Window.,C0

empty window = 8L.INDO.'

run untrustedDISPLAY co mplet e u n t r ust edD I SP~LAY

TRUSTED-PATH 4 1 s y8PdspIa

rununtrusted hasico _ omltentrusted~ 6&~co

window_ id2 wid (1) window_ id = prog?.monitoring (1)
8UNTRUS TED' =pros! GUNTRUSTED =pros?

131ve t o -un t rust edDSLAY take-from untrustedDISPLAY -- I

giveto untrusted basicop t ake- fr o mu nt r ust ed asc-op

window-id'? = wid? (1) window_ id? = wid? (1)
OUNTRUSTED = pros? 8UNTRUSTED = pros?~
eUNTRUSTED' = pros! eLWINDOW' = window'

(1) This ties up the window performing the operations with the window
from the basic operation schema.

17.2 Display Operations performed by Users

Users may perform the operations to alter their display, such as creating
windows and running untrusted software. These operations are not restricted to
users with certain roles, however a user can only affect their own display.

9 i e_to untrusted USER e 9 ye _to untrusted DSPLAY A 4)~~ playUSER-STATE

takerom untrusted USER e take-from untrusted DISPLAYA (Ddspl&uSERSTATE

create-_wi ndow USER e createwindowDSPLAY A OOP d,plawUSER-STATE

run untrustedusER A run untrusted DSPLAY~ A (O iplawUSER-STATE

complete urtrusteduSER e compl ete unt rusted DISPLAY A (D
0

dIsauSERSTATE

Display Operations 6

18. The Operations upon Users

18.1 User Operations perFormed in a Display

With the exception of' logging in, the operations on users Will be requested fr"C

one of the windows of a display. All these operations must be performed fro-

the trusted path. No capabilities are involved in these operations and herce

there will be no change to the capabilities available to the window.

create user DSPLA Y ! create-user ^ TRUSTED-PATH d

A EWINDOW

changeasswordDISPLAY changepassord A TRUSTEDPPTri

A EWIND3,'

change_clearanceDISPLAY change_clearance Jo.rna l led

A TRUSTED_PATHd sp y ^ A

logout DISPLAY a 109 out A TRUSTED-PATHd il A _1 a y

18.2 Operat!ons upon Users performed by the Users

The operations on the users of Sercus Hill be performed by the uIsers in oE

the windows of their display. Creating users and changn9 clearances must ne

performed by a system security officer.

create-userUSER A create-userDISPLAY A S5O

chanse_clearanceUSE - change-clearanceDISPLAY A 590

log out usER change_password uSER

DOP i 1sp ai USERSTATE OPds p p uSERsT TE

l090out DISPLAY change_password SPLAY

uid7 = caused-by? (1) uid ? = causedby? (1)

(1) Users may only change their own password and log theemselves out.

Note that logging in is not specified as unlike all the other
operations, it is not performed by a logged in user in one of the
windows of their display.

68 User 0De-et *c s

7

19. Sercus - the Complete System

The complete system for Sercus is the journalled filing system, journalled
users, the mail system and anonymous objects, together v-th constraints to tie
them together. This section puts all the components specified in the preceeding
sections together, and defines the operations to take place in this state.

SERCUS

JOURNALLED_FILINGSYSTEM
THEANONS
JOURNALLEDUSERSTATE
MAIL

0 u : ran whichuser * 1
ran(u.-upboard.name) Q exist
{ w which window(u.windows J * w.available } Q exist
{ p u.programs - p.using . , exist

where
exist dom which doc U dom whichfile U dom whichanon

{ m: ran mail . m.messase } c dam which doc (2)

ran mail Q dom which_user (3)

{ m : dom mail . m.from } Q dam whichuser (4)

(1) All the trusted capabilities in the cupboards, windows and software
must be for existing documents and files, and untrusted
capabilities must be for existing anonymous objects.

(2) Messages can only contain capabilities for existin9 documents.

(3) Messages may only be sent to legal users.

(4) Only legal users may send messages.

LSERCUS a [SERCUS' ; SERCUS I

ESERCUS e [SERCUS I eSERCUS' = eSERCUS]

19.1 Initial State

The initial state of Sercus is a single user, who will be a system security
officer. There will hence be a single journal on the user state. There will be no
documents or files, and consequently no journals for other objects, no mail
messages or anyone logged-in.

The Complete System 69

. . .. , . -i _I i h ,own

I I .I

INITIALSTATE

8SERCUS

whichdoc' = {}
which_file' = {}
whichanon' =
maili' ={}

logged in' = {}

0 dom whichuser' = .
U u : ran which user' . u.cupboard = {}

u.clearance 2 ss
journal-users' = 1
dom journal_users' = dom whichuser'

19.2 Operations on the Complete State

Filing system operations:
regrade_dccument A regrade-document USER A HMPIL A ETHEANDNS

regrade-file a resradefil USER ^ EMAIL A ETIHE_NDNS

reqrade_file_title e regrade_file-titleUSER A EMAIL A ETHEAN2NS

createdocument A create_document USER A EMPIL / ETHEANONS

createfile A create-fileUSER A -MAIL A ETHEANONS

adddocto_file e add-doc-to fileUSER A EMAIL A ETHEANONS

finddocument A find-document USER A -MAIL A ETHEANCNS

findfileddocument A findfileddocument USER A MAIL A ETHEAN'NS

list__cdr a list__cdr use A ESERCUS

filecontents A file-contentsUSER A EMAIL A ETHEANONS

readdocument A readdocument USER A -MAIL A ETHEANONS

find A findUSER A 'EMAIL A EJOURNALLED_FILING SYSTEM

keep A keep USER A EMAIL A EJOURNALLEDFILINS_SYSTEM

Mail operations:
send-message A send-messageu SER A zTHE_ANON S

A zJOURNALLED_FILINGSYSTEM

open nextmessage A open nextmessageUSER A =-THEANDNS

A _JOUPNALLEDFILIN_5YTE',

Display operations:
create_window - create windowUSER p A fIL A ETHEANONS

A zJOURNALLED_FILIN5_SYSTEr

?0 The Complete S>stE'

run _untrusted e run_ untrusted USER A EMA~IL A VTHEANONS

A EJOURNALLEDFILINGS"STEI

9ive-to-untrusted e give-to _untrusted USRA EMAIL A ETHEANONS

A TEJOURNALLED FILINGSYSTEM

take-from-untrusted e take_from untrusted USER " FMAIL A ETHE-NONS

A =JOURNALLEDFILINGSYSTEM

coplteuntrusted e complete__untrusted USER MI EHNN

A 'zJDURNALLEDFILINGSYSTEM

User operations:
create_ujser e create-user USER A -MA~IL A FJOURNALLEOFILINGSYSTEM

A 7-THEANONS

log-out e 109 out USER A EMAIL A EzJOURN!ALLEOFILING-SYSTEM

A HTHEANONS

change-clearance e chanse clearance USER A EMA~IL A EZTHE_ANONS

A -zJOURNrALLED-FILINGSYSTEM

change-password e chanSe~passwordUSER A -MAIL A FTHEANONS
A E:JOURNALLEDFILINGSYSTEM

log-inLLlo9~injourla 110d A EMAIL A EJCURNALLEDFILINGSYSTEM

A HTHEANONS

The Complete System 71

EOW

20. Summary

This document has formally specified the requirements For an example se-z-e
system. The first part described all the components that were requ red ir the

final system and defined the simple operations upon these. The next part

defined how these components were to be combined and showed ho- the

operations on the various compoents were related to the others. Ths

structuring of the specification makes it much easier to read and highlihits the

dependencies and constraints it will be necessary to enforce in the
implementation. The actual set of operations that have been defined is fa--'

limited. However, enough operations have been specified to provide a useable

system and to illustrate all the important areas.

21. References

11] A Secure Capability Computer
5 R Wiseman
Procs. TFFT Symrup Security and Privacy, Oakland CA, April 1386

]2) A Capability Approach to Multi-level Security
S R Wiseman

Procs. IFIP/Sec, Monaco, December 1986

[3) Protection and Security Mechanisms in the SMITE Capab,lity Compute-

S R Wiseman
RSRE Memorandum i11?

[1) The 2 Notation: A Reference Manual
J M Spivey Draft JMS-7-12a

PRG, Oxford University

(S] The Trusted Path between SMITE and the User

S R Wiseman, P F Terry, A W Wood, C L Harrold

To appear: IEEE Symp. Security and Privacy, Oakland CA, April 1388

Thanks to Simon Wiseman, Peter Bottomley, Ruaridh Macdonald and Alf Smtth ;c-

their comments and suggestions.

72

7-/ -

DOCUMENT CONTROL SHEET

Overall security classification of sheet ..

(A5 far as possible this sheet should contain only unclassified information. If it is necessary c er'er

classified information, the box concerned must be marked to indicate the classification eg (P) (Ci c' (o)

1. ORIC Reference (if known) 2. Originator's Reference 3. Agency Reference . Repor' Secj.l-i

Report 88 00 2 _ncI ass ifi 47__

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location

known) Royal Signals and Radar Establishment

778400 St Andrews Road, Malvern, Worcestershire WRI- 3PS

5a. Szns~ring Aqency's Ea. Sconsoring Agency (Contract Authority) Name and Location

Code (if known)

i. Title

FORMAL SPECIFICATION OF A SECURE DOCUMENT CONTROL SYSTEM FOR SMITE

7a. Title in Foreign Language (in the case of translations)

7t. Presented at (for conference rapers) Title, place and date of conference

S. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10. Date p. re'.

Harrold C L 1988.02 7'

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords)

continue on seoa'ate -iece of cazer

Abtract

This Report formally describes the requirements for a demonstration of a secure

electronic registry control system (Sercus) to be implemented using the securit

attributes of the SMITE secure capability computer.

S8: /48

